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Abstract. The theory developed in two previous papers, for studying the Weaire model in 
terms of returning walks, is used here to study the density of electronic states at the band 
edges. The relationship between topological disorder and the shape of the band edges is 
considered and the shape of the inner band edge is shown to depend on oscillating terms in 
the asymptotic expansion of the number of returning walks. This work suggests the 
possibility of a band gap in a fourfold coordinated structure with I V,/V,l > ). 

1. Introduction 

In two previous papers (Lukes and Nix 1973a, b, to be referred to as I and 11) a formalism 
is developed for studying the tight-binding hamiltonian of Weaire (1971) for both 
periodic and topologically disordered systems. Following 11, the density of states per 
site of a W-fold coordinated structure is (quite generally) 

(1.1) 
(Ef + - V ;  1=0  

where 

V, v2 
(E+ -(W-l)v,)(E+ + V 1 ) -  v; c =  

and N ( t )  is the number of walks which return to the initial site after t steps. 
It has been proved (Domb et a1 1959) that the high-order moments of n(E)  and hence 

the asymptotic form of N ( t )  determine the form of n(E) near the upper band edge of a 
one-band model. The dependence of the lower band edge on the asymptotic form of 
the number of returning walks can be seen as follows: Domb et a1 have shown that 
by considering density of states with compact support in the positive energy region, 
the form of the upper band edge depends only on the higher moments of the density of 
states. For a one-band model with hamiltonian 

the moments, p,, are VrN( t ) .  Consider now a general density of states n(E) with compact 
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support, which lies in both the positive and negative energy regions. This may be split 
into two terms 

n(E) = n")(E)+ n(')( - E),  

where 

n(')(E) = n(E)o(E) 

n(')(E) = n( - E)o(E), 

and o(E) is the Heaviside step function. 

The moment pr  of n(E) is related to the moments pi') or n(')(E) and A') of n(')(E) by 
The theorem of Domb et al can now be applied to both functions n(')(E) and n(')(E). 

where the asymptotic forms of p ! I )  and p!') determine the nature of the upper and the 
lower band edges respectively. For positive V the order of magnitude of pi1) must be 
greater than or equal to the order of pi'). If the asymptotic form of p, is found to be 

pr * art-v1+(-b)ft-v2, ( 1.2) 

then by an argument on orders of magnitude, 

p!l) a r t - v l  and pi') ~1 b't-". 

It can now be seen that the behaviour of the lower band edge depends critically on the 
first term in the asymptotic expansion of the form (- b)?-'*. It is not possible to take 
pi')  > 0 and p i2 )  = 0 for the higher moments, for this would imply that the density of 
states is zero for negative energies. 

Thorpe and Weaire (1971) have shown that the properties of the two-band Weaire 
model can be obtained from a one-band model. In their transformation, the upper 
and lower edges of the band in the one-band model correspond to the outer and inner 
edges of the bands in the two-band model. The above discussion of the one-band model 
can therefore be applied to the density of states at the edges of the band in the Weaire 
model. In papers I and I1 the density of states in the Weaire model at the outer band 
edges was considered. The purpose of the present paper is to extend the theory to 
deal with the inner band edges and then to speculate on the possible form of the density 
of states at these edges by lookingat the first term which oscillates in sign in the asymptotic 
expansion of the number of returning walks for various examples. 

2. Mathematical preliminaries 

In order to calculate the density of states for some general asymptotic forms of N ( t )  
consider 

m 
I 

Z(a) = 2 a r + l t - v  
r = n  

with v > 0 and n > 0. A simple integral representation for t-' may be used to give 
1 m PQ 
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The terms of the series CPO,, a' e-rx x '- are continuous in x, and 

l ~ ' e - ' ~ x ' - ~ 1  < laJ' 

for t >/ n > (v - l)/e and x E (0, CO). Thus the series is uniformly convergent in x for 
la1 < 1 and x E (0, CO) and hence 

(2.3) 

The sum inside the integral (2.3) is a geometric progression, and thus for la1 < 1 
and n > (v - l)/e it may be summed to give 

A simple change of variable puts the integral in the form 

In this form I(a) can be analytically continued to all complex values of a, apart from a 
cut running from 1 to 00 along the real axis. The band edge therefore corresponds to 
a = 1.  From (1 .1 )  it is clear that to find the density of states it is necessary to consider 
in this general formalism 

1 
D(a, b )  = - lim+ [(b + ir)l(a + ic) - (b - ir)l(a - id]. 

2711 f-0 

In the limit this becomes 

ab 
r(V) 

D(a, b) = -(In a)'-'o(a- 1). (2.4) 

For a greater than but approximately equal to unity 

The exponent ( v -  1 )  agrees with that found by Domb et al. 
The procedure developed above can be extended to incorporate a ln(t) term in the 

number of returning walks. Consider the series (2.1); by differentiating with respect to 
v term by term the series becomes 

m 

- 1 a'+'(ln t)t-'. 
t = n  

Thus for a series of this form the term corresponding to (2.4) will be 

ab[ln(ln a) - I - ' ( V ) / ~ ( V ) ]  (In a)'- 'o(a - i),/r(v), 

and for a 5 1 this becomes 

b(a- l)'-' ln(a- l)o(a- l)/r(v). 
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3. Random walks and density of states for periodic lattices 

The number of returning walks N ( t )  for periodic lattices can be found in explicit form. 
The asymptotic forms of N ( t )  for two periodic structures and the consequent shape of 
the band edges are investigated in this section in order that a better understanding of 
these be obtained. 

In I the exact expression for the number of walks on a diamond lattice is substituted 
into the expression (1.1) for the density of states. The asymptotic form of N ( t )  for a 
periodic diamond lattice is given by 

t even 
N ( t )  = 

(0 t odd. 

The density of states at the band edges is then determined by the series 

i m  1 (16c ' ) ' ~ -~ /~ .  
f = n  

(3.1) 

From $ 2  it can be seen that the band edges occur at 16c2 = 1. Equation (3.2) can be 
rewritten as 

(3.3) 

This form implies that the outer band edges occur at 4c = 1 and the inner band edges 
at 4c = - 1. The function c appears in (1.1) and for W = 4 a graph is shown in figure 1. 
The band edges are found to occur at 

1 
3y+y 

or E = -V,-V, 

or E = 3V1-V2. 

\ 

Figure 1. Graph of E against c (for 2V1/V, > 1 the points r ,  s are - VI + V,, 3V1 - V, 
respectively and for 2V1/V2 e 1, 3V, - V,, - VI + V, respectively). 
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From the general formula of § 2, with a = 4c and b = 2(E - v1)/4v1 V,, the density of 
states per site at the band edges becomes 

2 2v1 + v, 3/2 
n(E) = -~ 

ii2/ v,v, 1 'AE"'2 

at the outer band edges and 

2 2v1 - v, 3/2 
n(E) = - ___ 

*2l  v,v2 I 
at the inner band edges where AE is the energy measured into the band relative to the 
band edge. 

Because the model is reformulated in I1 in terms of general coordination number, 
it is possible to consider other lattices. A lattice which proves important as far as 
this discussion is concerned, but which is not a likely structure for a semiconductor, 
is the face-centred cubic lattice. This has twelvefold coordination; the number of 
returning walks is given by 

cos x cos y +cos x cos z +  cos y cos z 

3 1 .  N ( t )  = 9 jjj dx dy dz ( 
0 

The series which appears in the density of states may be summed as a geometric pro- 
gression to give 

n 

c'N(t) = JJJ dx dy dz [ 1 - 4c(cos x cos y + cos y cos z + cos z cosx)] - l .  
n3 

0 

The denominator varies from 1 - 12c to 1 +4c and hence there are branch points at 
c = & and c = -a.  This is in contrast to the diamond lattice, the simple-cubic lattice 
and several others which have branch points at c = f l/W The asymptotic form for 
the number of walks on a face-centred cubic lattice can be shown by a saddle-point 
approximation to be of the form 

3( - 4)' 
In t 

where only the leading term which alternates in sign is retained. It is to be noted that 
constant coefficients of each term depend on the multiplicities of the extremum values. 
The density of states at the outer band edges can then be expected to vary as IAEI'" 
and at the inner band edges as -In IAE(. The infinite density of states at the inner 
band edges can be thought of physically as an accumulation of states at the band edges 
due to the fact that the band edges in this example do  not occur symmetrically, that is 
Wc # L 1. The fact that the singularity is logarithmic arises from the peculiar dispersion 
law for an electron moving on the square face of the Brillouin zone. 

4. Density of states and topological disorder 

In order to introduce topological disorder it is instructive to consider a random walk 
in three dimensions such that the individual steps are of constant length I, but in random 
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directions. The probability density of a return to the origin after t steps is given by 
(Rayleigh 1919) 

1 sinx ' 
4n213 dx " (x) pt(0) = - 

For large t a saddle-point approximation can be made. This leads to an expansion of 
sin x/x about its extrema. It has extrema at x = 0, f4.5, k7.7, etc, of which previous 
authors only use the central one. The contributions from the first three central values 
gives 

(4.2) 

which is of the desired form for determining the behaviour at the inner band edges. 
From (4.2) the leading term in N ( t )  can be seen to be proportional to Wrt-312,  where 
again W is the coordination number. It thus appears that in any returning walks, on 
a lattice or completely random, the leading term in the asymptotic form of the number 
of walks contains a factor t -3'2.  This would mean that the density of states at the outer 
edges, in the Weaire model, would behave as (AE)l12 in the crystalline and disordered 
case. If not all the bonds are saturated, that is there is some average coordination 
number W <  the leading term in the number of walks would be expected to be 
proportional to (W)' t -3/2.  This would result in a shift of the position of the outer band 
edges but not a change in shape. 

The various examples suggest that the number of walks function for a disordered 
solid should be of the form 

(4.3) 

w i t h ) < v < $ a n d O <  f < W , O < g <  W. 
There is also the possibility of dealing with a ln(t) in the second term. Upon sub- 

stituting this form for N ( t )  into the expression (1.1) for the density of states, and using 
the theory developed in $2,  it can be seen that the band edges occur atfc = 1 and gc = 1 .  
This shows that the band edges are only symmetrical iff = g in which case v 2 $. 
It may thus be expected that g < f. The behaviour of the density of states at the inner 
band edges could then be expected to vary between (AE)-'12 and (AE)'l2. 

The first term in (1.1) gives delta functions in the density of states at energies 
E = - V, V,.  It is to be noted that the position of these delta functions is independent 
of the coordination number, and the asymptotic form of the number of walks function. 
For a diamond lattice with IVl/V21 > 3 one delta function is positioned on the lower 
edge of the upper band. However, for a face-centred cubic lattice or for a topologically 
disordered lattice it has been shown that there could be a shift of the inner band edges 
causing a gap to appear. Thus, for a general coordination number and for topologically 
disordered systems, there could possibly be a gap between the occupied and unoccupied 
states for IVl/V21 > 2/W as well as for IV1/V21 < 2/W. 

In conclusion it has been shown that the formalism previously developed together 
with application to specific examples suggest some limits on the positions of the band 
edges and the shape of the density of states at these edges. It is to be noted that the 
nature of the inner band edges depends critically on the first term which oscillates in 
sign in the asymptotic expansion of the number of walks which return to the origin. 
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Further knowledge of this function for amorphous systems is necessary before any 
definite conclusions can be drawn about the nature of the electron spectrum for real 
amorphous systems. 
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